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INTRODUCTION 

An important problem is accelerator and experimental-area design 

is the determination of the fate of high-energy particles after they collide 

with something . 

A high-energy proton or, in general, a high-energy hadron under- 

goes different interactions with the medium as it traverses an element 

of path length in it. Both the sequence and location, as well as the 

nature and intensity of the interactions, occur randomly but under 

reasonably well-known probabilities along any element of path length. 

Hence, a convenient way to estimate the trajectory and fate of a high- 

energy proton entering a block of material is by following it through a 

sequence of small steps wherein all possible interactions are chosen 

randomly according to known probabilities. 

MONACO is a computer subroutine of the Monte-Carlo type which 

can be easily incorporated with other codes to investigate problems such 

as accelerator particle losses at scrapers, septa and abort systems, 

beam-slit efficiencies, etc. With minor changes it may also be used to 

calculate muon trajectories. 
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The listing given in the Appendix shows the simplicity of this 

subroutine. This simplicity also forces the disregard of fine details 

for the sake of mathematical compactness and time savings in the 

calculations. Of course, the simplifications imply some limitations in 

the applicability of the results. However, it is felt that the general 

nature of the results is not affected by the simplifications. 

The main limitations of the program are 

1. Neglect of proton energy losses by collisions 

2. Material thicknesses > 0.1 radiation length 

3. Neglect of secondary particles resulting from nonelastic 

events. 

MONACO has its origins in several of the subroutines of the extra- 

nuclear cascade program TRANSK’ written by J. Ranft in CERN. 

Program Specification 

MONACO is a FORTRAN-coded subroutine which follows a single 

proton through a block of material. The physical processes calculated 

are multiple coulomb scattering (MCS), nuclear elastic scattering, and 

nonelastic events as a whole. The energy loss dE/dX to ionization and 

recoil are not calculated. The block is specified by its length, width, 

height, density, atomic weight, and atomic number. The general flow 

of the program is diagrammed in Fig. 1. 

An entry is made at MONACO to calculate material constants such 

as radiation length, nuclear cross sections, etc., as functions of atomic 
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weight, atomic number, and density. Any of these quantities for which 

the user has particular values, e. g. experimental values, may be 

entered as data by placing them in common storage prior to calling 

MONACO. Any of the three processes, MCS, nuclear scattering, or 

inelastic interaction, may be left out of the calculation by setting the 

parameters INHIBT (I) (I = 1, 2, 3) equal . TRUE. . A check is made 

that the given step length AZ lies between 1/4 radiation length and l/2 

interaction length. An entry is made at FATE for each proton which 

is to be followed. 

A length to a nuclear interaction point is chosen. If this length 

is greater than the step size, no nuclear event occurs in the step, and 

MCS only is calculated. The MCS angle 8 is chosen and a sine and 

cosine of a random azimuth are used to get projected values, 8 X and 

8 y, of the polar scattering angle. Transverse drifts proportional to 

the projections are added to the x and y coordinates. The projected 

angles are added to the existing angles for the path. The coordinates 

are then checked to see that they lie within the block. If they do not, 

the subroutine returns to the calling program with the particle coordi- 

nates at the end of the interval. If the particle is still in the block, a 

new step is taken. If a nuclear interaction point lies within the interval, 

the MCS results are calculated to that point. A choice is made between 

an elastic or nonelastic strong interaction by comparing a random 

number to the ratio (T eB /(T tot * If the interaction is nonelastic, the sub- 

routine returns the event coordinates to the calling program. If the 
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event is elastic, a choice between coherent and incoherent scattering 

determines the formula for the differential cross section. The random 

projections of this angle are added to the existing projected angles for 

the path and then the MCS calculation is carried from the interaction 

point to the end of the step. 

Multiple Coulomb Scattering 

The scattering produced by many soft coulomb interactions with 

nuclei and electrons is represented by a Gaussian distribution with 

standard deviation given by 
2 

where p = v/c, p is proton momentum in MeV/c, c 02> is the mean 

squared scattering angle, L is the thickness of the scatterer, and Lo 

is the radiation length. The formula used to calculate LO is ’ 

Lo = 137 Me2C4A 

4e4N0 Pn (1832 -1’3)z (z+ 1.39 - 0.09510g*oz)’ 

The quantity E < 0 is a thickness correction which reflects 

that the condition3 

(cm), 

(2) 

the fact 

(3) 

for the validity of Eq. (1) with E = 0 is not met. However, for 

L > O.lLo, 1e 1 < 0.1.‘2 
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More exact formulae are known, but formula (1) has the advantage of 

computational simplicity . Relativistic corrections and non-Gaussian 

statistics affect the results by less than 30%. The formula (2) for 

radiation length is used in absence of a user supplied value. 

The MCS angular distribution probability is ’ 

p(e) dS2 = kd$ sin 8d0 exp (-e2/< e2>) 

where 

7r 1 -1 
k= d$ sin Ode exp ( -e2/< 02> . 

(4) 

(5) 

Some people are initially disconcerted about the interpretation of < 02> ’ 

as the mean square angle of scattering and the absence of a 2 in the 

denominator of the exponent. The difference between the one dimen- 

sional Gauss ian 

P(x) =(const) exp ( -x2/21r2) (6) 

where Cx 2 > 2 = (T , and the Gaussian given in Eq. (4) follows from the 

different type of “space differential, ” namely, dx in Eq. (6) and sin f3de 

in Eq. (4). 

It is trivial to show the correctness of Eq. (4) in the small-angle 

approximation through straight forward integration. Recall that 

/ 
L2 

0 
*x exp(-x2iL2) dx = 2, (7) 
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/ 
= 2;: 

0 x xdx * exp ( -x2/L2) L4 
<x2> = 2 

f 
IT 

0 
xdx * exp ( -x~/L~) 

=- 
L2 

= L2, (8) 

2 

or the mean-square angle equals the denominator of the exponential 

function. 

To make a random choice of scattering angle according to the 

differential probability (4) one notes that the integrated probability for 

a scattering at angle 5 8 is 

/ 
6 

P(e) = p (&)d& = 1 -exp (-6J2/<02>). (9) 
0 

Thus, a random choice of integrated probability (i. e. , a number from 

a uniform random distribution between 0 and 1) leads to 8 distributed 

according to the differential probability p (8 ). This may be seen from 

a consideration of a P ( 8 ) vs 19 plot with a uniform distribution of points 

along the P axis with separation AP. The corresponding points along the 

8 axis will have separation 

dP A6’ = AP/dB = p (0) AP. (10) 

Thus, there is no need to calculate numbers distributed according to 

(4) directly. One need only set P (0 ) equal to a random number and 

solve for 13 . 
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8 = rand -<B 2> logNrand , 

where the substitution l-random number = another random number. 

Although the scattering angles are small, the azimuth may have 

.any value; therefore, only the projected angles can be summed from 

step to step. MONACO uses an algorithm due to van Neuman! to choose 

the sine and cosine of a random azimuth without use of the sine and 

cosine routines. If two random numbers x and y are chosen such that 

2 2 
x +y 51, 

they represent a random complex nurnber in the first quadrant of the 

unit circle. This number is interpreted as the square root of a random 

number Z 

Z = r2ei4 > 

so that 

and 

Thus, 

x + iy = re i$/2 , 

z = x2 - 2ixy-y2 =(x2 + y2) (cos 4 + i sin 4). 

(1,3) 

(14) 

(15) 

cos $5 = (x2 - y2, / (x2 +y21 (36) 

sin $ = (random)*2xy / (x2 + y’). (17) 

The squaring of x + iy covers the second quadrant from the first; the 

random choice of sign covers the third and fourth quadrants. The 

squaring destroys the uniform distribution in radius but not in phase. 
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The multiple scattering leads to a drift of the particle trajectory 

which is strongly correlated with the scattering angle. Because the 

angle is built up from many small scattering% the particle travels some 

distance as the angle is accumulating. Under the small angle approxi- 

mation, not even a few soft scatterings will change the angle sub- 

stantially. Approximately one would say that the particles’ drift should 

be about half the step size times the accumulated angle as though the 

entire angle came from a scattering 
2 

at the center of the step. It is 

demonstrated by Rossi’ that the result is actually 

Ax = exAz / d-?i, (18) 

where Ax is the transverse displacement accumulated in traveling a 

step AZ of scatterer in which the projected scattering angle is 13~. 

Nuclear Scattering 

The probability of a proton surviving strong interactions while 

penetrating a block of material of length Z is 

P(Z) = ke 
-z /A , (18) 

where A is the nuclear collision mean-free path related to the total cross 

sections by 

A = 1 /No(A), (39) 

where 
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N = number of nuclei/g = NO/A 

NO = Avagadro’s number 

A = atomic weight of the material 

(3 = total nuclear cross section = oelastic + 0 nonelastic* 

This cross section is assumed to be independent of proton energy. 

The value of ocan be read into common storage if it is explicitly 

kllOWtl. For materials where the total cross section has not been 

measured, the cross section is calculated using the interpolation 

atot 
= 0.059 Ao*64 barns. 

Equation (20) represents a fit to the cross section measurements at 

19.3 GeV/c by Bellettini et al. 5 

A length to a strong interaction is randomly chosen by a technique 

similar to that used to obtain formula (11) for multiple coulomb scatter- 

ing. Using Eq. ( 18) we get 

z = -log (NRandom) * A. (21) 

If Z is less than the step length, a nuclear collision occurs and the 

proton is transported to the point of collision undergoing MCS. The 

ensuing interaction can be either elastic or nonelastic. A decision is 

made by comparing a random number to the ratio of cross sections. If 

N Random ’ “el’“tot, 

then an elastic process occurs. The elastic cross section is obtained 

from a fit to the Bellettini data at 19.3 GeV/c: 5 
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= 0.0064 A 
1.04 

(3 el barns. 

The elastic scattering cross section of protons on nuclei at high energies 

has two distinct components. One is the coherent scattering by the 

whole nucleus and the other is incoherent scattering of the protons on 

the individual nucleons of the nucleus (quasi-elastic). The coherent 

scattering predominates at small angles and the incoherent at large 

angles. 

For a given material atomic weight less than 62, the differential 

cross section can be approximated by the sum of two exponential terms 
6 

of the form 

do 
ds2 = 0.036A1’63p2 exp ( -14.5A0’66 1 t 1) 

(24) 
+ 0.047A”.33p2 exp (-10 1 t I), 

where p is the momentum of the incident proton and t is the four momentum 

transfer to the scattered proton. For elastic scattering 

I I ‘t = -2p2 (l-cos8). (25) 

Since the scattering is dominated by angles less than 15 mrad, 1 t 1 can 

be approximated by 

t 2 2 
=pe. (26) 

Equation (24) is then just a sum of two gaussians which are compatible 

with the previously discussed Monte-Carlo method for selecting scattering 

angle s. 
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The two components can conveniently be integrated over all angles 

to obtain the relative rate for each contribution. The decision on which 

elastic process occurs is made by comparing a random number with 

the ratio of (r /o coherent-elastic elastic’ 

Above atomic weight of 62 the measured differential cross sections 

show distinct secondary diffraction maximum and minimum. A general 

expression describing the elastic scattering is quite complicated. So, 

for mathematical convenience the following sum of two exponents is also 

used for high-Z materials: 

da = 0 *34A1’33 2 
ds2 * p exp (-60A o-33 1 t 1 ) 

+ 0.054A~~~‘p’ exp (-10 1 t 1 ) . 

(27) 

Since secondary diffraction structure is missing, the scattering angles 

for heavy materials may be underestimated. 
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Fig. 1. Flow chart. 


